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Abstract—The optimal sampling frequency in a Sigma-Delta
analog-to-digital converter with a fixed bitrate at the output is
studied. We consider the mean squared error performance metric
where the input signal statistics are known. Fixing the output
bitrate introduces a trade-off between the sampling rate and the
number of bits used to quantize each sample. That is, while
increasing the sampling rate reduces the in-band quantization
noise, it also reduces the number of bits available to quantize each
sample and therefore increases the magnitude of the quantization
noise. The optimal sampling rate is the result of the interplay
between these two phenomena. In this work we analyze the
sampling rate of a Sigma-Delta modulator of arbitrary order
under the approximation that the quantization error behaves
like additive white noise that is uncorrelated with the signal. We
show that for a signal with a spectrum that is constant over its
bandwidth, the optimal sampling rate is either the Nyquist rate or
the maximal sampling rate corresponding to the output bitrate.
The choice between the two is approximately a function of the
Sigma-Delta system order and the bitrate per unit bandwidth.

I. INTRODUCTION

A. Background

In analog to digital conversion (ADC) an analog signal is
converted into a sequence of bits. Shannon’s distortion-rate
function [1] gives the theoretical minimal error as a function of
the bitrate of the digital sequence, however it does not provide
concrete methods for the A/D conversion. Practical ADC
schemes involve operations of sampling and quantization. The
overall bitrate in the resulting digital representation is the
product of the sampling rate with the average number of bits
used to store each sample.

In this work we are interested in the trade-off between
these two quantities in A/D conversion using Sigma-Delta
modulation (Σ∆M). In this ADC scheme, the input process is
oversampled (sampled above its Nyquist rate) and quantized
using a low-resolution quantizer (usually 1-bit). Σ∆M also
employs a negative feedback loop and an integrator so that
quantization error of previous samples will be considered in
quantizing consecutive samples.

While oversampled modulation does not provide any
theoretical improvement over sampling at the Nyquist rate
or at the minimal rate that achieves the rate-distortion
function [2], Σ∆M is commonly used in applications due
to its relatively cheap and simple hardware implementation.
However, its high sampling rates may be hard to implement
in some applications [3]. This makes a performance analysis
of Σ∆M relevant for all sampling frequencies, and not only
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in the high over-sampling rate regime.

In this work we analyze the Σ∆M as a source coding
scheme, that is, we are interested in the minimal error as a
function of the bitrate. For that purpose we assume a statistical
model on the input process and mean squared error (MSE)
as our performance metric. We use the additive white noise
assumption [4] for quantization error, where the variance of the
quantization noise decreases exponentially with the number of
bits per sample q.

If the analog source is sampled at frequency fs, the memory
rate at the output of the quantizer is R = q fs bits per time
unit. Since Σ∆M uses oversampling to reduce the amount of
in-band quantization noise, increasing fs decreases the error
and effectively improves the resolution of the quantizer. This
implies that fixing the memory rate R introduces an interplay
between fs and q that induces a trade-off between the amount
of in-band quantization noise and the magnitude of this noise.

B. Related Work

A Σ∆M is based on the principle of oversampling and
a negative feedback loop that includes an integrator. The
paper [5] provides an extended tutorial of the theoretical and
practical aspects in Σ∆M. As in other systems which involve
quantization, in Σ∆M analysis it is common to approximate
the difference between the quantizer input and output by a
white additive noise, see e.g. [6]. While the conditions under
which this assumption yields a good approximation are not
usually met in Σ∆M, it has been shown in several cases
that the white noise assumption does not significantly change
the performance results obtained through a rigorous analysis
which does not make this assumption. We will discuss this
approximation more in Section II.

The feedback loop in the Σ∆M is sometimes referred to as
a quantization noise shaping system. The white quantization
noise assumption implies that in the absence of the feedback
loop (zero order Σ∆M), the power of the quantization noise
within the signal band decreases linearly with fs. With a simple
noise shaping system [6] the quantization noise is attenuated
even more and the in-band noise power decreases by a factor of
f 2L+1
s , where L is the number of consecutive feedback loops or

the modulator order. This implies a mean squared error (MSE)
reduction of R2L+1 in the bitrate. This error reduction is still
much slower than the exponential reduction of the optimal
distortion-rate trade-off in Shannon’s distortion-rate function
[1]. Oversampling schemes which try to bridge this gap and
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Fig. 1. Lth order Σ∆ modulator.

achieve exponential MSE reduction in bitrate using a single
bit quantizaer were suggested in [7] and [8].

In this work we do not restrict ourselves to single bit
measurements. Instead, we study the error in Σ∆M for all
sampling rates under a fixed bitrate R where the quantizer
resolution q and the sampling rate fs may vary.

C. Contribution

We derive an expression for the MSE under optimal linear
estimation in an Lth order Σ∆M of Fig. 1 and a fixed bitrate R
at the output of the modulator, under the assumption that the
quantization error behaves like an additive white noise that is
uncorrelated with the input signal. In addition, we analyze the
sampling rate f ?s that minimizes the MSE for this bitrate.

For input signals whose spectrum is constant over their
entire bandwidth 2 fB, the optimal sampling rate is found
to be either the Nyquist rate or the maximal sampling rate
allowed by the system. Which of the two is optimal is a
function of L, R and fB, that can be well-approximated by
R/(2 fB), which is the number of bits per unit bandwidth.

The rest of this paper is organized as follows: relevant
background on Σ∆M is given in Section II. In Section III
we solve an MSE estimation problem from discrete-time
measurements. In Section IV we describe our main results.
Concluding remarks are provided in Section V

II. PRELIMINARIES

We consider the Lth order Σ∆M of Fig. 1. The input
process is an analog wide-sense stationary (WSS) process
X(·) = {X(t), t ∈ R} with PSD

SX ( f ),
∫

∞

−∞

E [X(t + τ)X(τ)]e−2πiτ f dτ.

The discrete-time process X̄ [·] = {X̄ [n], n ∈ Z} is obtained by
uniformly sampling X(·) at frequency fs, namely

X̄ [n], X(n/ fs), n ∈ Z.

The signal Y [·] at the output of the quantizer is given by

Y [n] = XI [n]+η [n], (1)

where XI is the process at the input to the quantizer, and
η [·] is referred to as the quantization error process. In order
to linearize the system in Fig. 1 we make the following
assumption:

Assumption 1. The quantization error η [·] is an i.i.d process
independent of XI [·] with variance σ2

η that decreases exponen-
tially with the quantizer bit-resolution q.

Assumption 1 says that quantization error is a white noise
process independent of XI [·] with PSD

Sη

(
e2πiφ)= σ

2
η =

c0

(2q−1)2 ≈
c0

22q , (2)

where c0 is a constant that may depend on the properties of
the input signal. For example, if the quantizer is uniform over
the range [−Am/2,Am/2] we take c0 =

Am
12 .

Conditions under which Assumption 1 provides a good
approximation for the true behavior of the quantization error
were derived in [9]. While these conditions are not met in
general in Σ∆M, we motivate our use of Assumption 1 by
the following two facts: 1) error analysis which do not use
the approximation of Assumption 1 as in [10], [11], [12]
predict MSE reduction of no more than 3db per octave faster
in the bitrate R as compared to a simplified analysis using
Assumption 1, e.g. [6]. 2) The optimal linear MSE derived
under Assumption 1 is always higher than the optimal linear
MSE in the case where the noise is correlated with XI [·] or
with itself, under the same marginal distribution of the input
signal and the noise. This last point is explained in more
detail in [13].

Assumption 1 also implies that digital-to-analog converter
(DAC) that reverses the quantizer operation preserves the
linear input-output relation. It follows [6] that the relation be-
tween the input and the output of the Σ∆M can be represented
in the z domain by:

Y (z) = STF(z)X̄(z)+NTF(z)η(z), (3)

where the functions STF(z) and NTF(z) satisfy

STF(z) = z−1,



and
NTF(z) =

(
1− z−1)L

.

Equation (3) leads to the following relation between the
corresponding PSDs:

SY
(
e2πiφ)= ∣∣STF

(
e2πiφ)∣∣2 SX̄

(
e2πiφ) (4)

+
∣∣NTF

(
e2πiφ)∣∣2 Sη

(
e2πiφ)

= SX̄
(
e2πiφ)+ ∣∣1− e2πiφ ∣∣2L

Sη

(
e2πiφ)

= SX̄
(
e2πiφ)+(2sin(π f/ fs))

2L Sη

(
e2πiφ)

Equation (4) implies that only the quantization noise is statis-
tically affected by the feedback of the system, a phenomena
known as noise shaping.

III. MINIMAL MSE IN DISCRETE-TIME TO
CONTINUOUS-TIME LINEAR ESTIMATION

In this section we are interested in the minimal MSE
(MMSE) in linear estimation of the analog process X(·) from
the modulator output Y [·], i.e. the process X̂(·) that minimizes

lim
T→∞

1
2T

∫ T

−T
E
(
X(t)− X̂(t)

)2 dt (5)

over all processes reconstructing X(·) from Y [·] of the form

X̂(t) = ∑
n∈Z

w(t,n)Y [n].

This can be seen as a general estimation problem of a WSS
continuous-time signal from its noisy samples described by
(4). The solution to this estimation problem is given in the
following theorem.

Theorem 1. Consider the input-output relation (4) where X(·)
is a WSS process bandlimited to fB, X̄ [·] are its uniform
samples at rate fs and η [·] is an independent WSS noise
process. If fs ≥ 2 fB, then the minimal time-averaged MSE (5)
in linear estimation of X(·) from Y [·] is given by

mmse =
∫ fB

− fB

SX ( f )
1+SNR( f )

d f , (6)

where for f ∈ (− fB, fB),

SNR( f ), fs
SX ( f )

Sη

(
e2πi f/ fs

) ∣∣STF
(
e2πi f/ fs

)∣∣2∣∣NTF
(
e2πi f/ fs

)∣∣2 . (7)

Proof: We only give here a sketch of the proof. The details
can be found in [13]. For 0≤ ∆ < 1 define

X∆[n] = X ((n+∆)/ fs) , n ∈ Z.

It follows that the minimal MSE in (5) can be written as

mmse = lim
N→∞

∫ 1

0

1
2N +1

N

∑
n=−N

E
(
X∆[n]− X̂∆[n]

)2 d∆, (8)

where X̂∆[n] is the optimal MSE estimator of X∆[n] from Y [·].
Since X∆[·] and Y [·] are jointly stationary, the result follows
by using the error in a non-causal Wiener filter for estimating

X∆[n] from Y [·] in (8), and integrating over ∆.

In Theorem 1 we only gave an expression for the optimal
MSE. A linear estimator X̂(t) that achieves the minimal MSE
(6) can be obtained in one of the following ways:

(i) Digital low-pass filter with cutoff frequency fB/ fs fol-
lowed by a discrete-to-analog interpolation, followed by
an analog Wiener filter to recover X(·) from the analog
process.

(ii) Digital Wiener filter to recover the sampled source X̄ [·]
from Y [·] followed by discrete-to-analog interpolation.

The proof of this assertion can be found in [13].

By using the STF and NTF from (4) in Theorem 1, we
obtain the following expression for the minimal MSE in an
Lth order Σ∆M:

mmseΣ∆ =
∫ fB

− fB

SX ( f )
1+SNRΣ∆( f )

d f , (9)

where

SNRΣ∆( f ) =
fsSX ( f )

(2sin(π f/ fs))
2L

σ2
η

. (10)

Note that sin(π f/ fs) can be approximated by (π f/ fs)
2

provided fs is much bigger than the Nyquist rate fB. This
implies that as long as σ2

η remains constant, SNR( f ) increases
as fs

2L+1 with increasing fs. In the following subsection
we will study the behavior of (9) when the variance of the
quantization noise increases with fs, so as to keep a prescribed
bitrate R = q fs.

IV. Σ∆ MODULATION UNDER A FIXED BITRATE

In a sampling and quantization system with sampling rate
fs and a quantizer resolution of q bits per sample, the amount
of memory per time unit, or the bitrate, at the output of the
system is R , q fs bits per time unit. In this section we fix the
output bitrate R and study the dependency of the MSE in the
sampling rate fs. This means that the bit resolution q of the
ADC decreases as the sampling rate increases. Indeed, under
the fixed bitrate assumption, the variance of the quantization
noise from (2) satisfies

σ
2
η =

c0

22q =
c0

22R/ fs
, (11)

which is an increasing function of fs. Since in this model the
ADC must use at least one bit per sample, we limit fs to be
smaller than the bitrate R. We also assume that X(·) is band-
limited to fB and that fs is bigger than the Nyquist rate 2 fB.
That is, our interval of interest for fs is fs ∈ [2 fB,R]. From (9)
and (10), we obtain the following expression for the minimal
MSE under a fixed bitrate R:

mmse( fs,L,R) =
∫ fB

− fB

SX ( f )
1+SNR( f )

d f (12)
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Fig. 2. MMSE as a function of fs for the PSD (15) with a fixed R and
L = 0,1,2. The dashed curve is the upper bound (14).

where

SNR( f ) = SNRL, fs,R( f ) =
SX ( f )

c0

fs22R/ fs

22L sin2L
(

π f
fs

) . (13)

It follows that the contribution of each frequency f ∈
(− fB, fB) to the MSE is inversely proportional to the SNR
at that frequency. This SNR is the result of the interplay
between the overall in-band noise which is shaped by a factor

of
(

2sin
(

π f
fs

))2L
/ fs, and the magnitude of that noise which

is attenuated by 2−2R/ fs .
We can bound mmse( fs,L,R) from above by replacing 1+

SNR( f ) with SNR( f ) in the denominator of (12). This leads
to

mmse( fs,L,R)≤
c022L

fs22R/ fs

∫ fB

− fB
sin2L

(
π f
fs

)
d f , (14)

which is independent of the particular PSD SX ( f ). The MMSE
as a function of fs for a given R as well as the bound (14) are
depicted in Fig. 2.

Optimal Sampling Rate

For a given R, L and SX ( f ), we are interested in
the sampling rate f ?s that minimizes mmse( fs,L,R) over
fs ∈ [2 fB,R]. This requires an optimization over (12) and
(13), and in general cannot be obtained in a closed form. By
considering the ratio between SNR( f ) at these two sampling
rates, we obtain the following two statements:

Proposition 1. Fix SX ( f ).
(i) For any L ∈ N, there exists R large enough such that

f ?s = 2 fB.
(ii) For any R > 0 there exists L ∈N large enough such that

f ?s > 2 fB.

Proposition 1 shows that we can divide the R− L plane
into two regions: one that contains high values of R in which

Nyquist rate sampling is optimal, and the other which contains
high values of L in which oversampling achieves lower MMSE
than Nyquist rate sampling. We will see below that for PSDs of
the form (15), the optimal sampling rate is either the Nyquist
rate or the maximal sampling rate fs = R.

Flat Power Spectral Density

In this subsection we consider the case where the PSD of
the source is of the form

SX ( f ) = σ
2

{
1 | f | ≤ fB,

0 | f |> fB,
(15)

where fB > 0. Under the PSD (15), the SNR (13) can be
written as

SNR( f ) =
σ2

c0

fs22R/ fs(
2sin2L

(
π f
fs

))2L . (16)

The second derivative of (16) with respect to fs can be
obtained in a closed form, and is found to be strictly positive
for all L ∈N, R > 0, f ∈ (− fs/2, fs/2) and fs ∈ [2 fB,R]. That
is, (16) is concave with respect to fs in this domain and the
maximal value of (16) is obtained at one of the endpoints of
the interval [2 fB,R] (see Fig. 2). We conclude that f ?s is either
the Nyquist rate or the maximal sampling rate fs = R. Since
SNR( f ) is maximal at these two values of fs, (14) provides
a relatively good approximation for these two possible values
of f ?s . At fs = 2 fB, (14) leads to

mmse(2 fB,L,R)≤ c0
22L

2R/ fB

∫ fB

− fB
sin2L

(
π f
2 fB

)
d f

≤ c02−R/ fB (2L)!
(L!)2 . (17)

For fs = R we have

mmse(R,L,R)≤ c022L

4R

∫ fB

− fB
sin2L

(
π f
R

)
d f

≤c022L

4R

∫ fB

− fB

(
π f
R

)2L

d f =
c0π2L

4(1+2L)

(
R

2 fB

)−2L−1

, (18)

where this bound becomes tight as R� fB. From (17) and (18)
we conclude that the value of mmse( f ?s ,L,R) is approximately
a function of the maximal oversampling ratio

R̄ ,
R

2 fB
,

which can also be interpreted as the number of bits per unit
bandwidth. Fig. 3 shows the R̄−L plane that represents the
optimal sampling rate for the PSD (15), where the dashed line
approximates the border between the two regions by points at
which (17) is equal to (18). The minimal MSE obtained under
the optimal sampling rate is plotted in Fig. 4.
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Discussion

By increasing the bitrate R and sampling at the Nyquist
rate, we increase the accuracy of the quantizer which leads
to an exponential decrease in the MMSE as a function of R.
On the other hand, the Σ∆M with a 1-bit quantizer leads to
a polynomial MMSE reduction in R. The optimal sampling
rate f ?s and, as a result, the optimal bit allocation q = R/ fs
is determined by the interplay between these two behaviors,
which must be traded off for a fixed bitrate.

The first part of Proposition 1 essentially says that if R is
large enough then the exponential MMSE decrease obtained
by sampling at the Nyquist rate eventually leads to lower
MMSE. This implies that for high bitrates Σ∆M with a 1-
bit quantizer does not lead to an efficient bit allocation, which
is explained by the high correlation of the samples at high

sampling rates. The second part of Proposition 1 implies that
if R is low compared to L, then using a 1-bit quantizer and
oversampling at the maximal rate, and thus exploiting the noise
shaping mechanism of the Σ∆M, is the preferred strategy. If
SX ( f ) is of the form (15), the optimal sampling rate is always
one of these two cases, i.e. either sampling at the Nyqusit
rate or oversampling at the maximal possible rate R. We note
that an intermediate case in which 2 fB < fs < R is possible
depending on the particular form of the PSD, R and L. In this
case, sacrificing quantization resolution in order to sample at
rates slightly higher than the Nyquist rate and thus exploit the
feedback system of the modulator reduces the MSE.

V. CONCLUSIONS

We have considered A/D conversion using Σ∆M with a fixed
bitrate at the output, using a statistical model of a wide-sense
stationary input and mean squared error under optimal linear
estimation as the error metric. We showed that the optimal
sampling rate f ?s and the optimal bit-allocation strategy is a
function of the spectrum of the input signal, the modulator
order and the bitrate R. Our analysis shows that the optimal
bit allocation corresponds to oversampling when the bitrate is
low and to Nyquist rate sampling when the bitrate is high.
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